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The stability of mechanical systems, on which dissipative, gyroscopic, potential and positional non-conservative forces act, is 
investigated. The condition for asymptotic stability is obtained using the Lyapunov function and an estimate of the domain of 
attraction is also found in terms of the system being considered. A precessional system is also examined. It is shown that the 
condition for the asymptotic stability of a system is the condition of acceptability in the sense of the stability of a precessional 
system. The results obtained are applied to the problem of the stabilization, using external moments, of the steady motion of a 
balanced gyroscope in gimbals. 0 2003 Elsevier Science Ltd. All rights reserved. 

The results of this paper generalize and develop previous statements [l-8] concerning the stability of 
a system both by analysing the characteristic equation and constructing the Lyapunov function. We also 
note that a technique of structural transformations of dynamical systems, which enables one in a number 
of cases to eliminate terms characterizing the gyroscopic and positional non-conservative forces from 
the equations of motion, has been developed in [9]. The approach has been found to be effective and 
enables one to solve a number of problems of the stabilization of the motion of mechanical systems 
using a vibration. 

1. THE STABILITY OF A SYSTEM OF GENERAL FORM 

An estimate of the domain of attraction. The equations of motion of a mechanical system, on which 
dissipative, gyroscopic, potential and positional non-conservative forces act, can be reduced to the form 

f+Bi+hGi+Kx+Fx = X(x,$, x = (x ,,..., x,,f (1.1) 

Here, BT = B, GT = -G, KT = K, FT = -F are constant matrices which characterize the dissipative, 
gyroscopic and potential forces respectively, h > 0 is a scalar parameter and X(x, i) is a set of terms 
not lower than the second order in x and .k 

The stability of the equilibrium 

x = 0, i=o (1.2) 

is investigated. 
. 

We shall assume that the dissipative forces possess complete dissipation getG # 0 and that the vector 
function X(x, i) satisfies the inequality 

(1X(x, i)ll I ag(xTx + iTi), a. > 0, /1X(x, i)II = (Xi + . . . + xy2 (1.3) 

It is also assumed that the matrix S = GTF + FTC + KG - GK is positive definite. This condition 
cannot be discarded [l]. 

We consider the function 

V = (i - h-‘P*xf(i - h-‘PTx) + xT(GTG - h-2PPT)x, P = (K - F)G-’ + G (14 
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The inequality 

is the condition for it to be positive definite. Here, co > 0 and go > 0 are the largest and the smallest 
eigenvalue of the matrices PPT and GTG. 

The derivative V, calculated according to (1.1) and taken with the opposite sign, reduces to the form 

-3 = iT[2B + h-‘(P + PT)]j + h-‘xTSx - 2K’ AJBi- 2(iT- h-‘xTP)X(x, i) (l-6) 

Using estimate (1.3), we obtain 

12(iT - h-‘x’P)X(x, i)l 2 2JIiT - hxTPll 11X(x, i)ll I a,y(h, x, i)(A + fTi) 

Here 

Y(h,.h9 = 2p- h-‘xTPJJ = 2[(1- h-‘PTx)l(i - h-‘PTX)y 

It is obvious that 
m 090) = 0, y(h,x,i)20 

(1.7) 

(1.8) 

Henceforth, in order to simplify the form of the dependence of y on h and x, i is not shown. 
We introduce the notation 

M = GE, N = qE, L = dt2i+ 112~“=QTx 

Q= -2h-‘PB, 5 = 2b-h-‘q-a,,~, q = h-‘p-a,,~ 

where E is the unit matrix, l.r > 0 is the smallest eigenvalue of the matrix S, b > 0 and b. > 0 are the 
smallest and largest eigenvalues of the matrix B respectively, and B, cl is the eigenvalue of the matrix 
P + PT with the largest modulus. Taking inequality (1.7) into account, we have 

= LTL + xT[N - c-‘h-2PB2PT]x 2 LTL + (IJ - l$h-2b;co)xTx 
(1.9) 

In (1.9), it is assumed that the matrix M is positive definite, that is 

cl>0 (1.10) 

The condition of negative definiteness of the function ri is specified by the inequality 

F(y) = a&‘= - ao(h-ji + 2b - h-‘c,)y + (2b - h-‘c&h-‘p - b;coh-2 > 0 (1.11) 

Since the discriminant of the polynomial F(y) is positive, the roots of the equation F(r) = 0 are real. 
In the linear approximation (a0 = 0), the positiveness of the free term in expression (l.ll), that is, the 
inequality 

h>h, = (C,P + &,YWW 

is the condition for ri to be negative definite. 
The coefficient of yin expression (1.11) cannot be positive (otherwise h < hl = (ci - p)/(B), which 

contradicts the inequality h > h2, since h2 > h,). It follows from this that the roots of the polynomial 
F(y) are positive. 

Putting ho = max[(ff)“‘, ] h, , when h > ho, we obtain I/ > 0, 6’ < 0, which implies, on the basis of 

Lyapunov’s theorem, the asymptotic stability of system (1.1). 
If V is a positive-definite function and the domain V < l(1 > 0) p c 0, then the domain I/ < 1 lies 

in the domain of attraction of the equilibrium position (1.2) [lo]. 
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Taking account of expression (1.8) for y and, also, the form of the function V, which is given by 
expression (1.4), we note that it is possible to take I = $/4 (y is the smallest positive root of the equation 
F(y) = 0), since the domain I/ < s/4 lies wholly in the domain y < y, where V < 0. 

It can be shown that inequality (1.10) follows from the inequality y < yi. Actually, if we put 
aoy2 = 2b - h-lci, then the condition y < y2 reduces to the obvious inequality 

[(h 
-I 2 -2 2 112 

(p++cl)-2b) +4h &J >/z-‘(p+c,)-2b 

We will now formulate the above result in the form of a theorem. 

Theorem. If the matrix S = GTF + FTG + KG - GK is positive definite, then, when h > ho, system 
(1.1) is asymptotically stable and the domain I/ < $/4 lies in the domain of attraction of equilibrium 
position (1.2). 

2. THE STABILITY OF A PRECESSIONAL SYSTEM 

A precessional system, which is used in the applied theory of gyroscopic systems, is obtained in the first 
approximation from Eq. (1 .l) and has the form 

(B+hG)i+(K+F)x = 0 (2.1) 

Consider the positive-definite function 

V = xT(B + IzG)~(B + hG)x (2.2) 

The derivative v, calculated in accordance with system (2.1) reduces to the form 

3 = -xTS,x, S, = hS+B(K+F)+(K-F)B (2.3) 

It follows from expression (2.3) that, if the matrix Si is positive definite, the precessional system is 
asymptotically stable. 

Since, on transferring to a precessional system, it is assumed that the parameter h is fairly large, 
the matrix Si will be positive definite if the matrix S is positive definite. Hence, if the matrix S is 
positive definite and the parameter h is fairly large, systems (1.1) and (2.1) will be simultaneously 
asymptotically stable. 

3. STABILIZATION OF THE STEADY MOTION OF 
A GYROSCOPE IN GIMBALS 

As an application of the results obtained above, we will consider the problem of the stabilization of 
the steady motion of a balanced gyroscope in gimbals by means of external moments. We will write the 
equations of motion of the system in the form of Lagrange’s equations 

q = (a,l%cp). 2% = ;(A,-Co sin21.3)ti2 + iB,-$‘+ iC($ + &sinp)2 (3.1) 

A, = A+A,+A,, B, = A+B,, Co = A+A,-B, 

Here, a, l3 and cp are the angles of rotation of the external ring, the internal ring and the rotor 
respectively, M = (M,, Ms, MJ is the external moment, Ai, Bi, Ci are the moments of inertia of the 
internal ring,A2 is the moment of inertia of the external ring about the axis of rotation andA 5 B and 
C are the equatorial and polar moments of inertia of the rotor. 

On putting M9 = 0 and eliminating the cyclic coordinate cp, the equations of motion reduce to the 
form 

(A, - Cosin2P)&- Co&bsin2P + H&zosp = M, 

Bob + Co&2sinpcosj3 -H&cosp = Mp 
(3.2) 
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Here, H = C(+ + d sir@) is a cyclic constant. 
Suppose the following external moments act on the system 

M, = -dir-fP, Mp = -db+fa 

where d > OJ > 0 are constants. For convenience, we will introduce the dimensionless time and the 
parameters 

-1 
a = C,A, , c = t&%, 1 -’ ‘I*, h = cHd-’ 

After some reduction, system (3.2) will have the form 

(1 -asin*P)a”-a~‘P’sin2P+ca’+ hfl’cosP+fp = 0 

c*P”+aa’*sinpcosP+cpl- ha’cosb-fa = 0 
(3.3) 

The prime denotes a derivative with respect to r and the earlier notation is retained for the parameter5 
Next, we write system (3.3) in vector form 

x” + Bx’ + h Gx’ + Fx = X(x, x’) 

x = (X,,X*f, XI = a, x* = cp, x = (X,, X2)’ 

B = diag(c, c-l), G = 
/-:-I# F=~-;-,f;~ 

X, = zsin2$ 
( 

1 - asin*? 
> 

-1 -1 
xix; - acsin 2x2 _ 1 -asin*?? 

( 

2sin*i + crsin*z(2cosi - *J]xi ’ 

> 

xi- 

-!j 
( 

2x2 
-I * 

l-asin - 
C I[ 

(3.4) 

X2 = -gx;sinzfj - fsin*?Zx; 
We now apply the results of Section 1 to system (3.4) which has the form of system (1.1) when 

K = 0. 
The matrix S = GTF + FTC = Zfc-*E is positive definite since f > 0 and its eigenvalue u = 2fc-*. 

The parametersgo, co, b, b. and cl have the formgo = c-*, co = f* + c-*, b = c, b. = ~8, cl = 2f (to be 
specific, it’is assumed that c < 1). 

Omitting the calculations associated with the estimation according to the norm of the non-linear terms 
XI and X2; we present the final result 

IlXll = JR I fz,(x;’ + x: + xi) 
where 

a0 
= max a(1 +c2)+c(2-a-a*) a+h(2-a) 2ac*+h(l+a)+c(l-a) 

2c(l-a) ’ 2c(l-a) ’ 4c3( 1 -a) 

The steady motion 

in which the planes of the rings are orthogonal is asymptotically stable when 

h > ho, ho = (1 + 5f2c2)l(4fc3) 

The estimate of the domain of attraction is given by the inequality 

a’* + c*p” + c-*a* + p* + 2h-‘(a’@ - ap’ + faa’ + c*f pp’) < yT/4 
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where 

a,y, = fh-1(C-2 - 1) + c - [(fh-‘(C-* -1)+C)2-4Ch-2(Lh0)]1’2 
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